The tower spectrum

Jonathan Schilhan

Kurt Gödel Research Center

Hejnice, 2020

generous support through FWF Project Y1012-N35

The Spectrum Tower, Warsaw

A *tower* is a sequence $\langle x_{\alpha} : \alpha < \delta \rangle$ of infinite subsets of ω , such that

•
$$\forall \alpha < \beta < \delta(x_{\beta} \subseteq^* x_{\alpha})$$
, where $x_{\beta} \subseteq^* x_{\alpha}$ iff $|x_{\beta} \setminus x_{\alpha}| < \omega$

•
$$\forall x \in [\omega]^{\omega} \exists \alpha < \delta(x \not\subseteq^* x_{\alpha})$$

Question

What is the least δ such that there is a tower of length δ ?

The answer is the regular cardinal t. We will ask:

Question

For what δ is there a tower of length δ ? More specifically: For which regular cardinals κ is there a tower of length κ ?

A *tower* is a sequence $\langle x_\alpha:\alpha<\delta\rangle$ of infinite subsets of $\omega,$ such that

•
$$\forall \alpha < \beta < \delta(x_{\beta} \subseteq^* x_{\alpha})$$
, where $x_{\beta} \subseteq^* x_{\alpha}$ iff $|x_{\beta} \setminus x_{\alpha}| < \omega$

•
$$\forall x \in [\omega]^{\omega} \exists \alpha < \delta(x \not\subseteq^* x_{\alpha})$$

Question

What is the least δ such that there is a tower of length δ ?

The answer is the regular cardinal t. We will ask:

Question

For what δ is there a tower of length δ ? More specifically: For which regular cardinals κ is there a tower of length κ ?

A *tower* is a sequence $\langle x_\alpha:\alpha<\delta\rangle$ of infinite subsets of $\omega,$ such that

•
$$\forall \alpha < \beta < \delta(x_{\beta} \subseteq^* x_{\alpha})$$
, where $x_{\beta} \subseteq^* x_{\alpha}$ iff $|x_{\beta} \setminus x_{\alpha}| < \omega$

•
$$\forall x \in [\omega]^{\omega} \exists \alpha < \delta(x \not\subseteq^* x_{\alpha})$$

Question

What is the least δ such that there is a tower of length δ ?

The answer is the regular cardinal t. We will ask:

Question

For what δ is there a tower of length δ ? More specifically: For which regular cardinals κ is there a tower of length κ ?

A *tower* is a sequence $\langle x_\alpha:\alpha<\delta\rangle$ of infinite subsets of $\omega,$ such that

•
$$\forall \alpha < \beta < \delta(x_{\beta} \subseteq^* x_{\alpha})$$
, where $x_{\beta} \subseteq^* x_{\alpha}$ iff $|x_{\beta} \setminus x_{\alpha}| < \omega$

•
$$\forall x \in [\omega]^{\omega} \exists \alpha < \delta(x \not\subseteq^* x_{\alpha})$$

Question

What is the least δ such that there is a tower of length δ ?

The answer is the regular cardinal t. We will ask:

Question

For what δ is there a tower of length δ ? More specifically: For which regular cardinals κ is there a tower of length κ ?

 $\mathcal{T} := \{\kappa: \kappa \text{ regular and there is a tower of length } \kappa\}$

Obviously $\mathcal{T} \subseteq [\aleph_1, 2^{\aleph_0}]$. Main goal: control \mathcal{T} .

This has been done for mad families before:

Theorem (Blass; Shelah, Spinas)

(GCH) Let C be a set of uncountable cardinals so that

- C is closed under singular limits,
- C has a maximum,
- max C has uncountable cofinality,
- $\aleph_1 \in \mathcal{C}$.

Then there is a ccc forcing extension in which $\mathcal{A} = \mathcal{C}$.

 $\mathcal{T} := \{\kappa: \kappa \text{ regular and there is a tower of length } \kappa\}$

Obviously $\mathcal{T} \subseteq [\aleph_1, 2^{\aleph_0}]$. Main goal: control \mathcal{T} . This has been done for mad families before:

Theorem (Blass; Shelah, Spinas)

(GCH) Let C be a set of uncountable cardinals so that

- C is closed under singular limits,
- C has a maximum,
- max C has uncountable cofinality,
- $\aleph_1 \in \mathcal{C}$.

Then there is a ccc forcing extension in which $\mathcal{A} = \mathcal{C}$.

What is the main idea?

Hechler defined a ccc poset $\mathbb{H}_{mad}(\kappa)$ for adding a mad family of size κ by finite approximations.

Given C as above we simply force with $\mathbb{P} := \prod_{\kappa \in C}^{<\omega} \mathbb{H}_{mad}(\kappa)$.

Using a modification of $\mathbb{H}_{mad}(\kappa)$ adding a tower of length κ we could show the following:

Theorem (S.

Assume there are infinitely many weakly compact cardinals. Let $C \subseteq \omega \setminus \{0\}$. Then there is a forcing extension in which for every $n \in \omega$,

 $\aleph_{2n}\in\mathcal{T}\leftrightarrow n\in\mathcal{C}.$

This is unsatisfying.

What is the main idea?

Hechler defined a ccc poset $\mathbb{H}_{mad}(\kappa)$ for adding a mad family of size κ by finite approximations.

Given C as above we simply force with $\mathbb{P} := \prod_{\kappa \in C}^{<\omega} \mathbb{H}_{\mathsf{mad}}(\kappa)$.

Using a modification of $\mathbb{H}_{mad}(\kappa)$ adding a tower of length κ we could show the following:

Theorem (S.

Assume there are infinitely many weakly compact cardinals. Let $C \subseteq \omega \setminus \{0\}$. Then there is a forcing extension in which for every $n \in \omega$,

 $\aleph_{2n}\in\mathcal{T}\leftrightarrow n\in\mathcal{C}.$

This is unsatisfying.

What is the main idea?

Hechler defined a ccc poset $\mathbb{H}_{mad}(\kappa)$ for adding a mad family of size κ by finite approximations.

Given C as above we simply force with $\mathbb{P} := \prod_{\kappa \in C}^{<\omega} \mathbb{H}_{\mathsf{mad}}(\kappa)$.

Using a modification of $\mathbb{H}_{mad}(\kappa)$ adding a tower of length κ we could show the following:

Theorem (S.)

Assume there are infinitely many weakly compact cardinals. Let $C \subseteq \omega \setminus \{0\}$. Then there is a forcing extension in which for every $n \in \omega$,

 $\aleph_{2n} \in \mathcal{T} \leftrightarrow n \in C.$

This is unsatisfying.

Instead we have a new idea. Let us outline a general framework:

Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} < \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

- $\forall l \in \lim L \forall \alpha \leq \delta(\mathbb{B}_l^{\alpha} = \varinjlim_{k \leq l} \mathbb{B}_k^{\alpha})^1$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{I_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{I_{top}}^{\delta}$ -name for a real, there is $I \in L \setminus \{I_{top}\}, \ \alpha < \delta$ and a \mathbb{B}_{I}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 $^{1}I \in \lim L \leftrightarrow orall k_{0}, \dots, k_{n} < I \exists k'(k_{0}, \dots, k_{n} < k' < I)$ $\mapsto \langle B \rangle \langle E \rangle \langle E \rangle$ $\equiv \mathfrak{I} \otimes \mathfrak{I}$

Instead we have a new idea. Let us outline a general framework:

Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} < \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

- $\forall l \in \lim L \forall \alpha \leq \delta(\mathbb{B}_l^{\alpha} = \varinjlim_{k \leq l} \mathbb{B}_k^{\alpha})^1$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{I_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{I_{top}}^{\delta}$ -name for a real, there is $l \in L \setminus \{I_{top}\}, \alpha < \delta$ and a \mathbb{B}_{l}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 $^{1}I \in \lim L \leftrightarrow orall k_{0}, \dots, k_{n} < I \exists k'(k_{0}, \dots, k_{n} < k' < I)$ $\mapsto \langle B \rangle \langle E \rangle \langle E \rangle$ $\equiv \mathfrak{I} \circ \mathfrak{a}$

Instead we have a new idea. Let us outline a general framework:

Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let

 $\{\mathbb{B}_{I}^{\alpha}: I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} < \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

- $\forall l \in \lim L \forall \alpha \leq \delta(\mathbb{B}_l^{\alpha} = \varinjlim_{k \leq l} \mathbb{B}_k^{\alpha})^1$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{I_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{I_{top}}^{\delta}$ -name for a real, there is $l \in L \setminus \{I_{top}\}, \alpha < \delta$ and a \mathbb{B}_{l}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

Instead we have a **new idea**. Let us outline a general framework: Let *L* be a lattice with a top element $l_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} < \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

- $\forall l \in \lim L \forall \alpha \leq \delta(\mathbb{B}_l^{\alpha} = \varinjlim_{k \leq l} \mathbb{B}_k^{\alpha})^1$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{I_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{I_{top}}^{\delta}$ -name for a real, there is $I \in L \setminus \{I_{top}\}, \alpha < \delta$ and a \mathbb{B}_{I}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 $^{1}I \in \lim L \leftrightarrow orall k_{0}, \dots, k_{n} < I \exists k'(k_{0}, \dots, k_{n} < k' < I)$ $\mapsto \langle B \rangle \langle E \rangle \langle E \rangle$ $\equiv \mathfrak{I} \diamond \mathfrak{I}$

Instead we have a **new idea**. Let us outline a general framework: Let *L* be a lattice with a top element $l_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} \ll \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

$$\forall l \in L \forall \alpha \in \lim(\delta + 1)(\mathbb{B}_l^{\alpha} = \varinjlim_{\beta < \alpha} \mathbb{B}_l^{\beta}),$$

 $\forall l \in \lim L \forall \alpha \leq \delta(\mathbb{B}_l^{\alpha} = \varinjlim_{k < l} \mathbb{B}_k^{\alpha})^1$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{I_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{I_{top}}^{\delta}$ -name for a real, there is $l \in L \setminus \{I_{top}\}, \alpha < \delta$ and a \mathbb{B}_{l}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 $^{1}I \in \lim L \leftrightarrow orall k_{0}, \dots, k_{n} < I \exists k'(k_{0}, \dots, k_{n} < k' < I)$ $\mapsto \langle \mathcal{B} \rangle \langle \mathcal{B} \rangle \langle \mathcal{B} \rangle \langle \mathcal{B} \rangle$

Instead we have a **new idea**. Let us outline a general framework: Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} \leq \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

- $\forall I \in L \forall \alpha \in \lim(\delta + 1)(\mathbb{B}_{I}^{\alpha} = \varinjlim_{\beta < \alpha} \mathbb{B}_{I}^{\beta}),$
- $\forall l \in \lim L \forall \alpha \leq \delta (\mathbb{B}_{l}^{\alpha} = \varinjlim_{k < l} \mathbb{B}_{k}^{\alpha})^{1}$ $\forall k_{0}, k_{1} \leq l \in L \forall \alpha, \beta \leq \gamma \leq \delta$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that l_{top} is a limit, $L \setminus \{l_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{l_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{l_{top}}^{\delta}$ -name for a real, there is $l \in L \setminus \{l_{top}\}, \alpha < \delta$ and a \mathbb{B}_{l}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

Instead we have a **new idea**. Let us outline a general framework: Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} \ll \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

- $\forall I \in \lim L \forall \alpha \leq \delta(\mathbb{B}_{I}^{\alpha} = \varinjlim_{k < I} \mathbb{B}_{k}^{\alpha})^{1}$

 $\forall k_0, k_1 \le l \in L \forall \alpha, \beta \le \gamma \le \delta$

$$\langle \mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} \rangle_{\mathbb{B}_l^{\gamma}} = \mathsf{Amalg}(\mathbb{B}_{k_0}^{\alpha}, \mathbb{B}_{k_1}^{\beta} / \mathbb{B}_{k_0 \wedge k_1}^{\min(\alpha, \beta)})$$

_emma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{I_{top}}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{I_{top}}^{\delta}$ -name for a real, there is $l \in L \setminus \{I_{top}\}, \alpha < \delta$ and a \mathbb{B}_{l}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 $^{1}I \in \lim L \leftrightarrow \forall k_{0}, \ldots, k_{n} < I \exists k'(k_{0}, \ldots, k_{n} < k' < I)$

Instead we have a **new idea**. Let us outline a general framework: Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} \ll \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

 $\forall I \in L \forall \alpha \in \lim(\delta + 1)(\mathbb{B}_{I}^{\alpha} = \varinjlim_{\beta < \alpha} \mathbb{B}_{I}^{\beta}), \\ \forall I \in \lim L \forall \alpha \leq \delta(\mathbb{B}_{I}^{\alpha} = \varinjlim_{k < I} \mathbb{B}_{k}^{\alpha})^{1} \\ \forall k_{0}, k_{1} \leq I \in L \forall \alpha, \beta \leq \gamma \leq \delta \\ \langle \mathbb{B}_{k_{0}}^{\alpha}, \mathbb{B}_{k_{1}}^{\beta} \rangle_{\mathbb{B}_{1}^{\gamma}} = \operatorname{Amalg}(\mathbb{B}_{k_{0}}^{\alpha}, \mathbb{B}_{k_{1}}^{\beta} / \mathbb{B}_{k_{0} \wedge k_{1}}^{\min(\alpha, \beta)}).$

00000

Suppose that l_{top} is a limit, $L \setminus \{l_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}_{hop}^{\delta}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}_{hop}^{\delta}$ -name for a real, there is $l \in L \setminus \{l_{top}\}, \alpha < \delta$ and a \mathbb{B}_{l}^{α} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 $^{1}I \in \lim L \leftrightarrow \forall k_{0}, \ldots, k_{n} < I \exists k'(k_{0}, \ldots, k_{n} < k' < I)$ is about the set of the set o

Instead we have a **new idea**. Let us outline a general framework: Let *L* be a lattice with a top element $I_{top} \in L$ and δ an ordinal. Let $\{\mathbb{B}_{I}^{\alpha} : I \in L, \alpha \leq \delta\}$ be a set of complete boolean algebras such that $\mathbb{B}_{I}^{\alpha} < \mathbb{B}_{k}^{\beta}$ for $\alpha \leq \beta$ and $I \leq k$. Then we call this an amalgamation system if:

•
$$\forall l \in L \forall \alpha \in \lim(\delta + 1)(\mathbb{B}_{l}^{\alpha} = \varinjlim_{\beta < \alpha} \mathbb{B}_{l}^{\beta}),$$

• $\forall l \in \lim L \forall \alpha \leq \delta(\mathbb{B}_{l}^{\alpha} = \varinjlim_{k < l} \mathbb{B}_{k}^{\alpha})^{1}$
• $\forall k_{0}, k_{1} \leq l \in L \forall \alpha, \beta \leq \gamma \leq \delta$

$$\langle \mathbb{B}^{lpha}_{k_0}, \mathbb{B}^{eta}_{k_1}
angle_{\mathbb{B}^{\gamma}_l} = \mathsf{Amalg}(\mathbb{B}^{lpha}_{k_0}, \mathbb{B}^{eta}_{k_1} / \mathbb{B}^{\mathsf{min}(lpha,eta)}_{k_0 \wedge k_1})$$

Lemma

Suppose that I_{top} is a limit, $L \setminus \{I_{top}\}$ is σ -directed, $\omega < cf(\delta)$ and $\mathbb{B}^{\delta}_{I_{top}}$ is ccc. Then whenever \dot{x} is a $\mathbb{B}^{\delta}_{I_{top}}$ -name for a real, there is $l \in L \setminus \{I_{top}\}, \alpha < \delta$ and a \mathbb{B}^{α}_{l} -name \dot{y} , such that $\Vdash \dot{x} = \dot{y}$.

 ${}^{1}I \in \lim L \leftrightarrow \forall k_{0}, \dots, k_{n} < I \exists k'(k_{0}, \dots, k_{n} < k' < I) \exists k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j k < j$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_l the trivial Boolean algebra for every $l \in L$.
- Suppose that \mathbb{B}_l^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:
 - γ limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,
 - $\gamma = \alpha + 1$: given l_{α} , let $\dot{\mathbb{Q}}_{\alpha}$ be a $\mathbb{B}_{l_{\alpha}}^{\alpha}$ -name for a σ -centered forcing given by some book-keeping function. We define:

$$\begin{split} \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \ast \dot{\mathbb{Q}}_{\alpha} \text{ if } l_{\alpha} < l \text{ and} \\ \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \text{ else.} \end{split}$$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_I the trivial Boolean algebra for every $I \in L$.
- Suppose that \mathbb{B}_l^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:
 - γ limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,
 - $\gamma = \alpha + 1$: given l_{α} , let $\dot{\mathbb{Q}}_{\alpha}$ be a $\mathbb{B}_{l_{\alpha}}^{\alpha}$ -name for a σ -centered forcing given by some book-keeping function. We define:

$$\begin{split} \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \ast \dot{\mathbb{Q}}_{\alpha} \text{ if } l_{\alpha} < l \text{ and} \\ \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \text{ else.} \end{split}$$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_l the trivial Boolean algebra for every $l \in L$.
- Suppose that \mathbb{B}_l^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:
 - γ limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,
 - $\gamma = \alpha + 1$: given l_{α} , let $\dot{\mathbb{Q}}_{\alpha}$ be a $\mathbb{B}_{l_{\alpha}}^{\alpha}$ -name for a σ -centered forcing given by some book-keeping function. We define:

$$\begin{split} \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \ast \dot{\mathbb{Q}}_{\alpha} \text{ if } l_{\alpha} < l \text{ and} \\ \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \text{ else.} \end{split}$$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_l the trivial Boolean algebra for every $l \in L$.
- Suppose that \mathbb{B}_{l}^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:
 - γ limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,
 - γ = α + 1: given *l*_α, let Q
 ^ˆ_α be a B
 ^α_{lα}-name for a σ-centered forcing given by some book-keeping function. We define:

$$\begin{split} \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \ast \dot{\mathbb{Q}}_{\alpha} \text{ if } l_{\alpha} < l \text{ and} \\ \mathbb{B}_{I}^{\alpha+1} &:= \mathbb{B}_{I}^{\alpha} \text{ else.} \end{split}$$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_l the trivial Boolean algebra for every $l \in L$.
- Suppose that \mathbb{B}_{l}^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:
 - γ limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,
 - γ = α + 1: given *l*_α, let Q
 ^ˆ_α be a B
 ^α_{lα}-name for a σ-centered forcing given by some book-keeping function. We define:

$$\mathbb{B}_{I}^{\alpha+1} := \mathbb{B}_{I}^{\alpha} * \dot{\mathbb{Q}}_{\alpha} \text{ if } l_{\alpha} < l \text{ and} \\ \mathbb{B}_{I}^{\alpha+1} := \mathbb{B}_{I}^{\alpha} \text{ else.}$$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_l the trivial Boolean algebra for every $l \in L$.
- Suppose that \mathbb{B}_{l}^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:
 - γ limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,
 - $\gamma = \alpha + 1$: given l_{α} , let $\dot{\mathbb{Q}}_{\alpha}$ be a $\mathbb{B}_{l_{\alpha}}^{\alpha}$ -name for a σ -centered forcing given by some book-keeping function. We define:

$$\begin{split} & \mathbb{B}_{I}^{\alpha+1} := \mathbb{B}_{I}^{\alpha} * \hat{\mathbb{Q}}_{\alpha} \text{ if } I_{\alpha} < I \text{ and} \\ & \mathbb{B}_{I}^{\alpha+1} := \mathbb{B}_{I}^{\alpha} \text{ else.} \end{split}$$

Given a lattice L as above and a regular cardinal $\lambda \ge |L|$ let $\{I_{\alpha} : \alpha < \lambda\}$ enumerate $L \setminus \{I_{top}\}$ such that every I appears λ many times.

- We start with \mathbb{B}^0_l the trivial Boolean algebra for every $l \in L$.
- Suppose that \mathbb{B}_l^{α} has been defined for $\alpha < \gamma \leq \lambda$ and all $l \in L$, then:

•
$$\gamma$$
 limit: let $\mathbb{B}^{\gamma}_{I} = \varinjlim_{\alpha < \gamma} \mathbb{B}^{\alpha}_{I}$,

• $\gamma = \alpha + 1$: given l_{α} , let $\dot{\mathbb{Q}}_{\alpha}$ be a $\mathbb{B}^{\alpha}_{l_{\alpha}}$ -name for a σ -centered forcing given by some book-keeping function. We define:

$$\mathbb{B}_{l}^{\alpha+1} := \mathbb{B}_{l}^{\alpha} \ast \dot{\mathbb{Q}}_{\alpha} \text{ if } l_{\alpha} < l \text{ and} \\ \mathbb{B}_{l}^{\alpha+1} := \mathbb{B}_{l}^{\alpha} \text{ else.}$$

Lemma

 $\{ \mathbb{B}_{l}^{\alpha} : \alpha \leq \lambda, l \in L \} \text{ is an amalgamation system of CBAs.}$ Moreover $\mathbb{B}_{l_{top}}^{\lambda}$ has the ccc (and in particular all \mathbb{B}_{l}^{α} 's).

Proof.

This is an induction on $\alpha \leq \lambda$. The most interesting is the amalgamation requirement. The ccc follows since $\mathbb{B}^{\lambda}_{h_{\text{top}}}$ is just a fsi of ccc forcings (since σ -centered forcings stay ccc in any extension).

Lemma

 $\{ \mathbb{B}_{l}^{\alpha} : \alpha \leq \lambda, l \in L \} \text{ is an amalgamation system of CBAs.}$ Moreover $\mathbb{B}_{l_{top}}^{\lambda}$ has the ccc (and in particular all \mathbb{B}_{l}^{α} 's).

Proof.

This is an induction on $\alpha \leq \lambda$. The most interesting is the amalgamation requirement.

The ccc follows since $\mathbb{B}^{\lambda}_{h_{op}}$ is just a fsi of ccc forcings (since σ -centered forcings stay ccc in any extension).

Lemma

 $\{\mathbb{B}_{l}^{\alpha}: \alpha \leq \lambda, l \in L\} \text{ is an amalgamation system of CBAs.}$ Moreover $\mathbb{B}_{h_{\text{top}}}^{\lambda}$ has the ccc (and in particular all \mathbb{B}_{l}^{α} 's).

Proof.

This is an induction on $\alpha \leq \lambda.$ The most interesting is the amalgamation requirement.

The ccc follows since $\mathbb{B}_{h_{\text{top}}}^{\lambda}$ is just a fsi of ccc forcings (since σ -centered forcings stay ccc in any extension).

Let $X \subseteq L \setminus \{l_{top}\}$ then X is called κ -unbounded if $|X| = \kappa$ and for any $Y \subseteq X$,

Y is bounded $\rightarrow |Y| < \kappa$.

Theorem

Assume that $\kappa<\lambda$ and there is no $\kappa\text{-unbounded subset in }L\setminus\{I_{top}\},$ then

 $V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \notin \mathcal{T}.$

Proof.

Suppose $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is forced to be a tower. For each $\xi < \kappa$ we can assume that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi}}^{\alpha_{\xi}}$ name for some $\alpha_{\xi} < \lambda$ and $k_{\xi} \in L \setminus \{l_{top}\}$. As $\kappa < \lambda$ we have that $\sup_{\xi < \kappa} \alpha_{\xi} = \alpha < \lambda$. Moreover since there is no κ -unbounded subset of L, there is $X \in [\kappa]^{\kappa}$ so that $\{k_{\xi} : \xi \in X\}$ is bounded, say by $I \in L \setminus \{l_{top}\}$. Then $\langle x_{\xi} : \xi \in X \rangle$ is added by \mathbb{B}_{I}^{α} .

Let $X \subseteq L \setminus \{l_{top}\}$ then X is called κ -unbounded if $|X| = \kappa$ and for any $Y \subseteq X$,

Y is bounded $\rightarrow |Y| < \kappa$.

Theorem

Assume that $\kappa<\lambda$ and there is no $\kappa\text{-unbounded subset in }L\setminus\{I_{top}\},$ then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \notin \mathcal{T}.$$

Proof.

Suppose $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is forced to be a tower. For each $\xi < \kappa$ we can assume that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi}}^{\alpha_{\xi}}$ name for some $\alpha_{\xi} < \lambda$ and $k_{\xi} \in L \setminus \{l_{top}\}$. As $\kappa < \lambda$ we have that $\sup_{\xi < \kappa} \alpha_{\xi} = \alpha < \lambda$. Moreover since there is no κ -unbounded subset of L, there is $X \in [\kappa]^{\kappa}$ so that $\{k_{\xi} : \xi \in X\}$ is bounded, say by $I \in L \setminus \{l_{top}\}$. Then $\langle x_{\xi} : \xi \in X \rangle$ is added by \mathbb{B}_{I}^{α} .

Let $X \subseteq L \setminus \{l_{top}\}$ then X is called κ -unbounded if $|X| = \kappa$ and for any $Y \subseteq X$,

Y is bounded $\rightarrow |Y| < \kappa$.

Theorem

Assume that $\kappa<\lambda$ and there is no $\kappa\text{-unbounded subset in }L\setminus\{I_{top}\},$ then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \notin \mathcal{T}.$$

Proof.

Suppose $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is forced to be a tower. For each $\xi < \kappa$ we can assume that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi}}^{\alpha_{\xi}}$ name for some $\alpha_{\xi} < \lambda$ and $k_{\xi} \in L \setminus \{l_{top}\}$. As $\kappa < \lambda$ we have that $\sup_{\xi < \kappa} \alpha_{\xi} = \alpha < \lambda$. Moreover since there is no κ -unbounded subset of L, there is $X \in [\kappa]^{\kappa}$ so that $\{k_{\xi} : \xi \in X\}$ is bounded, say by $l \in L \setminus \{l_{top}\}$. Then $\langle x_{\xi} : \xi \in X \rangle$ is added by \mathbb{B}_{l}^{α} .

Let $X \subseteq L \setminus \{l_{top}\}$ then X is called κ -unbounded if $|X| = \kappa$ and for any $Y \subseteq X$,

Y is bounded $\rightarrow |Y| < \kappa$.

Theorem

Assume that $\kappa<\lambda$ and there is no $\kappa\text{-unbounded subset in }L\setminus\{I_{top}\},$ then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \notin \mathcal{T}.$$

Proof.

Suppose $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is forced to be a tower. For each $\xi < \kappa$ we can assume that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi}}^{\alpha_{\xi}}$ name for some $\alpha_{\xi} < \lambda$ and $k_{\xi} \in L \setminus \{I_{\text{top}}\}$. As $\kappa < \lambda$ we have that $\sup_{\xi < \kappa} \alpha_{\xi} = \alpha < \lambda$. Moreover since there is no κ -unbounded subset of L, there is $X \in [\kappa]^{\kappa}$ so that $\{k_{\xi} : \xi \in X\}$ is bounded, say by $I \in L \setminus \{I_{\text{top}}\}$. Then $\langle x_{\xi} : \xi \in X \rangle$ is added by \mathbb{B}_{I}^{α} .

Let $X \subseteq L \setminus \{l_{top}\}$ then X is called κ -unbounded if $|X| = \kappa$ and for any $Y \subseteq X$,

Y is bounded $\rightarrow |Y| < \kappa$.

Theorem

Assume that $\kappa<\lambda$ and there is no $\kappa\text{-unbounded subset in }L\setminus\{I_{top}\},$ then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \notin \mathcal{T}.$$

Proof.

Suppose $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is forced to be a tower. For each $\xi < \kappa$ we can assume that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi}}^{\alpha_{\xi}}$ name for some $\alpha_{\xi} < \lambda$ and $k_{\xi} \in L \setminus \{I_{\text{top}}\}$. As $\kappa < \lambda$ we have that $\sup_{\xi < \kappa} \alpha_{\xi} = \alpha < \lambda$. Moreover since there is no κ -unbounded subset of L, there is $X \in [\kappa]^{\kappa}$ so that $\{k_{\xi} : \xi \in X\}$ is bounded, say by $I \in L \setminus \{I_{\text{top}}\}$. Then $\langle x_{\xi} : \xi \in X \rangle$ is added by \mathbb{B}_{I}^{α} .

Let $X \subseteq L \setminus \{l_{top}\}$ then X is called κ -unbounded if $|X| = \kappa$ and for any $Y \subseteq X$,

Y is bounded $\rightarrow |Y| < \kappa$.

Theorem

Assume that $\kappa < \lambda$ and there is no $\kappa\text{-unbounded subset in } L \setminus \{l_{top}\},$ then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \notin \mathcal{T}.$$

Proof.

Suppose $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is forced to be a tower. For each $\xi < \kappa$ we can assume that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi}}^{\alpha_{\xi}}$ name for some $\alpha_{\xi} < \lambda$ and $k_{\xi} \in L \setminus \{l_{top}\}$. As $\kappa < \lambda$ we have that $\sup_{\xi < \kappa} \alpha_{\xi} = \alpha < \lambda$. Moreover since there is no κ -unbounded subset of L, there is $X \in [\kappa]^{\kappa}$ so that $\{k_{\xi} : \xi \in X\}$ is bounded, say by $l \in L \setminus \{l_{top}\}$. Then $\langle x_{\xi} : \xi \in X \rangle$ is added by \mathbb{B}_{l}^{α} .

(...) But our book-keeping function will give at some later stage $\beta \ge \alpha$, $I_{\beta} = I$ and $\dot{\mathbb{Q}}_{\beta}$ a forcing diagonalizing $\langle x_{\xi} : \xi \in X \rangle$.

Theorem

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{I_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{h_{\text{top}}}} \models \kappa \in \mathcal{T}.$$

Note that such a sequence gives a κ -unbounded set.

(...) But our book-keeping function will give at some later stage $\beta \ge \alpha$, $I_{\beta} = I$ and $\dot{\mathbb{Q}}_{\beta}$ a forcing diagonalizing $\langle x_{\xi} : \xi \in X \rangle$.

Theorem

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{h_{\text{top}}}} \models \kappa \in \mathcal{T}.$$

Note that such a sequence gives a κ -unbounded set.

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is constructed inductively such that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}}$ name for a real for some $\alpha_{\xi} < \lambda$.

Assume we are given $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$. Let $\alpha := \sup_{\xi < \gamma} \alpha_{\xi} < \lambda$. Then $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ is added by $\mathbb{B}^{\alpha}_{k_{\gamma}}$. Our book-keeping function returns at some later stage $\beta \geq \alpha$, $l_{\beta} = k_{\gamma}$ and $\dot{\mathbb{Q}}_{\beta}$ a name for a forcing adding a pseudointersection of $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ (namely Mathias forcing relative to the generated filter). We let $\alpha_{\gamma} = \beta + 1$ and \dot{x}_{γ} a name for the generic added by \mathbb{Q}_{β} .

・ 一 マ ト ・ 日 ト ・

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{top}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is constructed inductively such that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}}$ name for a real for some $\alpha_{\xi} < \lambda$.

Assume we are given $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$. Let $\alpha := \sup_{\xi < \gamma} \alpha_{\xi} < \lambda$. Then $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ is added by $\mathbb{B}^{\alpha}_{k_{\gamma}}$. Our book-keeping function returns at some later stage $\beta \geq \alpha$, $I_{\beta} = k_{\gamma}$ and $\dot{\mathbb{Q}}_{\beta}$ a name for a forcing adding a pseudointersection of $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ (namely Mathias forcing relative to the generated filter). We let $\alpha_{\gamma} = \beta + 1$ and \dot{x}_{γ} a name for the generic added by \mathbb{Q}_{β} .

< ロ > < 同 > < 回 > < 回 >

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{top}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is constructed inductively such that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}}$ name for a real for some $\alpha_{\xi} < \lambda$. Assume we are given $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$. Let $\alpha := \sup_{\xi < \gamma} \alpha_{\xi} < \lambda$. Then $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ is added by $\mathbb{B}_{k_{\gamma}}^{\alpha}$. Our book-keeping function returns at some later stage $\beta \ge \alpha$, $l_{\beta} = k_{\gamma}$ and $\dot{\mathbb{Q}}_{\beta}$ a name for a forcing adding a pseudointersection of $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ (namely Mathias forcing relative to the generated filter). We let $\alpha_{\gamma} = \beta + 1$ and \dot{x}_{γ} a name for the generic added by \mathbb{Q}_{β} .

< ロ > < 同 > < 回 > < 回 >

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\begin{array}{l} \langle \dot{x}_{\xi}:\xi<\kappa\rangle \text{ is constructed inductively such that } \dot{x}_{\xi} \text{ is a } \mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}} \text{ name} \\ \text{for a real for some } \alpha_{\xi}<\lambda. \\ \text{Assume we are given } \langle \dot{x}_{\xi}:\xi<\gamma\rangle. \text{ Let } \alpha:=\sup_{\xi<\gamma}\alpha_{\xi}<\lambda. \\ \text{Then } \langle \dot{x}_{\xi}:\xi<\gamma\rangle \text{ is added by } \mathbb{B}_{k_{\gamma}}^{\alpha}. \text{ Our book-keeping function returns at} \\ \text{some later stage } \beta\geq\alpha, \ l_{\beta}=k_{\gamma} \text{ and } \dot{\mathbb{Q}}_{\beta} \text{ a name for a forcing} \\ \text{adding a pseudointersection of } \langle \dot{x}_{\xi}:\xi<\gamma\rangle \text{ (namely Mathias} \\ \text{forcing relative to the generated filter). We let } \alpha_{\gamma}=\beta+1 \text{ and } \dot{x}_{\gamma} \\ \text{ a name for the generic added by } \mathbb{Q}_{\beta}. \end{array}$

< ロ > < 同 > < 回 > < 回 >

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is constructed inductively such that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}}$ name for a real for some $\alpha_{\xi} < \lambda$. Assume we are given $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$. Let $\alpha := \sup_{\xi < \gamma} \alpha_{\xi} < \lambda$. Then $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ is added by $\mathbb{B}_{k_{\gamma}}^{\alpha}$. Our book-keeping function returns at some later stage $\beta \ge \alpha$, $l_{\beta} = k_{\gamma}$ and $\dot{\mathbb{Q}}_{\beta}$ a name for a forcing adding a pseudointersection of $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ (namely Mathias forcing relative to the generated filter). We let $\alpha_{\gamma} = \beta + 1$ and \dot{x}_{γ} a name for the generic added by \mathbb{Q}_{β} .

ヘロト ヘ部ト ヘヨト ヘヨト

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{hop}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is constructed inductively such that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}}$ name for a real for some $\alpha_{\xi} < \lambda$.

Assume we are given $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$. Let $\alpha := \sup_{\xi < \gamma} \alpha_{\xi} < \lambda$. Then $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ is added by $\mathbb{B}^{\alpha}_{k_{\gamma}}$. Our book-keeping function returns at some later stage $\beta \geq \alpha$, $I_{\beta} = k_{\gamma}$ and $\dot{\mathbb{Q}}_{\beta}$ a name for a forcing adding a pseudointersection of $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ (namely Mathias forcing relative to the generated filter). We let $\alpha_{\gamma} = \beta + 1$ and \dot{x}_{γ} a name for the generic added by \mathbb{Q}_{β} .

(ロ) (同) (三) (三) (二)

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{top}} \models \kappa \in \mathcal{T}.$$

Proof.

 $\langle \dot{x}_{\xi} : \xi < \kappa \rangle$ is constructed inductively such that \dot{x}_{ξ} is a $\mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}}$ name for a real for some $\alpha_{\xi} < \lambda$.

Assume we are given $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$. Let $\alpha := \sup_{\xi < \gamma} \alpha_{\xi} < \lambda$. Then $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ is added by $\mathbb{B}^{\alpha}_{k_{\gamma}}$. Our book-keeping function returns at some later stage $\beta \geq \alpha$, $I_{\beta} = k_{\gamma}$ and $\dot{\mathbb{Q}}_{\beta}$ a name for a forcing adding a pseudointersection of $\langle \dot{x}_{\xi} : \xi < \gamma \rangle$ (namely Mathias forcing relative to the generated filter). We let $\alpha_{\gamma} = \beta + 1$ and \dot{x}_{γ} a name for the generic added by \mathbb{Q}_{β} .

(ロ) (同) (三) (三) (二)

(...) <u>Claim</u>: $\langle x_{\xi} : \xi < \kappa \rangle$ will be a tower.

Suppose \dot{x} is a name for a real. Then there is $\alpha < \lambda$ and $l \in L \setminus \{l_{top}\}$ so that \dot{x} is added by \mathbb{B}_{l}^{α} . Let $\xi < \kappa$ be such that $k_{\xi} \not\leq l$ and assume wlog that $\alpha_{\xi} \leq \alpha$. Then we have that

$$\langle \mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} \rangle_{\mathbb{B}^{\lambda}_{k_{\text{top}}}} = \mathsf{Amalg}(\mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} / \mathbb{B}^{\alpha_{\xi}}_{l \wedge k_{\xi+1}}).$$

$$\begin{split} \mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}} &= \mathbb{B}_{k_{\xi+1}}^{\beta} \ast \dot{\mathbb{Q}}_{\beta} \text{ since } k_{\xi} < k_{\xi+1} \text{ and } \mathbb{B}_{l \wedge k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta} \text{ since } \\ k_{\xi} \not < l \wedge k_{\xi+1}. \\ \text{But then} \\ \text{Amalg}(\mathbb{B}_{l}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} \ast \dot{\mathbb{Q}}_{\beta} / \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta}) = \text{Amalg}(\mathbb{B}_{l}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} / \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta}) \ast \dot{\mathbb{Q}}_{\beta}. \\ \text{In particular the real added by } \mathbb{Q}_{\beta}, \text{ namely } x_{\xi}, \text{ is going to be generic over } V^{\mathbb{B}_{l}^{\alpha}} \ni x. \text{ This guarantees that } x \not \subseteq^{*} x_{\xi}. \end{split}$$

(...) <u>Claim</u>: $\langle x_{\xi} : \xi < \kappa \rangle$ will be a tower. Suppose \dot{x} is a name for a real. Then there is $\alpha < \lambda$ and $I \in L \setminus \{I_{top}\}$ so that \dot{x} is added by \mathbb{B}_{I}^{α} . Let $\xi < \kappa$ be such that

In particular the real added by \mathbb{Q}_{β} , namely x_{ξ} , is going to be generic over $V^{\mathbb{B}_{l}^{\alpha}} \ni x$. This guarantees that $x \not\subseteq^{*} x_{\xi}$.

(...) <u>Claim</u>: $\langle x_{\xi} : \xi < \kappa \rangle$ will be a tower. Suppose \dot{x} is a name for a real. Then there is $\alpha < \lambda$ and $l \in L \setminus \{l_{top}\}$ so that \dot{x} is added by \mathbb{B}_{l}^{α} . Let $\xi < \kappa$ be such that $k_{\xi} \not\leq l$ and assume wlog that $\alpha_{\xi} \leq \alpha$. Then we have that

 $\langle \mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} \rangle_{\mathbb{B}^{\lambda}_{k_{\text{top}}}} = \mathsf{Amalg}(\mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} / \mathbb{B}^{\alpha_{\xi}}_{l \wedge k_{\xi+1}}).$

$$\begin{split} \mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}} &= \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} \text{ since } k_{\xi} < k_{\xi+1} \text{ and } \mathbb{B}_{I \wedge k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{I \wedge k_{\xi+1}}^{\beta} \text{ since } \\ k_{\xi} \not < I \wedge k_{\xi+1}. \\ \text{But then} \\ \text{Amalg}(\mathbb{B}_{I}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} / \mathbb{B}_{I \wedge k_{\xi+1}}^{\beta}) = \text{Amalg}(\mathbb{B}_{I}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} / \mathbb{B}_{I \wedge k_{\xi+1}}^{\beta}) * \dot{\mathbb{Q}}_{\beta}. \\ \text{In particular the real added by } \mathbb{Q}_{\beta}, \text{ namely } x_{\xi}, \text{ is going to be generic over } V^{\mathbb{B}_{I}^{\alpha}} \ni x. \text{ This guarantees that } x \not \subseteq^{*} x_{\xi}. \end{split}$$

(...) <u>Claim</u>: $\langle x_{\xi} : \xi < \kappa \rangle$ will be a tower. Suppose \dot{x} is a name for a real. Then there is $\alpha < \lambda$ and $l \in L \setminus \{l_{top}\}$ so that \dot{x} is added by \mathbb{B}_{l}^{α} . Let $\xi < \kappa$ be such that $k_{\xi} \not\leq l$ and assume wlog that $\alpha_{\xi} \leq \alpha$. Then we have that

$$\langle \mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} \rangle_{\mathbb{B}^{\lambda}_{k_{\mathsf{top}}}} = \mathsf{Amalg}(\mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} / \mathbb{B}^{\alpha_{\xi}}_{l \wedge k_{\xi+1}}).$$

$$\begin{split} & \mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} \text{ since } k_{\xi} < k_{\xi+1} \text{ and } \mathbb{B}_{I \wedge k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{I \wedge k_{\xi+1}}^{\beta} \text{ since } \\ & k_{\xi} \not < I \wedge k_{\xi+1}. \\ & \text{But then} \\ & \text{Amalg}(\mathbb{B}_{I}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} / \mathbb{B}_{I \wedge k_{\xi+1}}^{\beta}) = \text{Amalg}(\mathbb{B}_{I}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} / \mathbb{B}_{I \wedge k_{\xi+1}}^{\beta}) * \dot{\mathbb{Q}}_{\beta}. \\ & \text{In particular the real added by } \mathbb{Q}_{\beta}, \text{ namely } x_{\xi}, \text{ is going to be } \\ & \text{generic over } V^{\mathbb{B}_{I}^{\alpha}} \ni x. \text{ This guarantees that } x \not \subseteq^{*} x_{\xi}. \end{split}$$

(...) <u>Claim</u>: $\langle x_{\xi} : \xi < \kappa \rangle$ will be a tower. Suppose \dot{x} is a name for a real. Then there is $\alpha < \lambda$ and $l \in L \setminus \{l_{top}\}$ so that \dot{x} is added by \mathbb{B}_{l}^{α} . Let $\xi < \kappa$ be such that $k_{\xi} \not\leq l$ and assume wlog that $\alpha_{\xi} \leq \alpha$. Then we have that

$$\langle \mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} \rangle_{\mathbb{B}^{\lambda}_{k_{\text{top}}}} = \mathsf{Amalg}(\mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} / \mathbb{B}^{\alpha_{\xi}}_{l \wedge k_{\xi+1}}).$$

$$\begin{split} \mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}} &= \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} \text{ since } k_{\xi} < k_{\xi+1} \text{ and } \mathbb{B}_{l \wedge k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta} \text{ since } k_{\xi} \not\leq l \wedge k_{\xi+1}. \end{split}$$
 But then

Amalg($\mathbb{B}_{l}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} / \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta}$) = Amalg($\mathbb{B}_{l}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} / \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta}$) $* \dot{\mathbb{Q}}_{\beta}$. In particular the real added by \mathbb{Q}_{β} , namely x_{ξ} , is going to be generic over $V^{\mathbb{B}_{l}^{\alpha}} \ni x$. This guarantees that $x \not\subseteq^{*} x_{\xi}$.

(...) <u>Claim</u>: $\langle x_{\xi} : \xi < \kappa \rangle$ will be a tower. Suppose \dot{x} is a name for a real. Then there is $\alpha < \lambda$ and $l \in L \setminus \{l_{top}\}$ so that \dot{x} is added by \mathbb{B}_{l}^{α} . Let $\xi < \kappa$ be such that $k_{\xi} \not\leq l$ and assume wlog that $\alpha_{\xi} \leq \alpha$. Then we have that

$$\langle \mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} \rangle_{\mathbb{B}^{\lambda}_{k_{\text{top}}}} = \mathsf{Amalg}(\mathbb{B}^{\alpha}_{l}, \mathbb{B}^{\alpha_{\xi}}_{k_{\xi+1}} / \mathbb{B}^{\alpha_{\xi}}_{l \wedge k_{\xi+1}}).$$

$$\begin{split} & \mathbb{B}_{k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} \text{ since } k_{\xi} < k_{\xi+1} \text{ and } \mathbb{B}_{l \wedge k_{\xi+1}}^{\alpha_{\xi}} = \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta} \text{ since } k_{\xi} \leq l \wedge k_{\xi+1}. \\ & \text{But then} \\ & \text{Amalg}(\mathbb{B}_{l}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} * \dot{\mathbb{Q}}_{\beta} / \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta}) = \text{Amalg}(\mathbb{B}_{l}^{\alpha}, \mathbb{B}_{k_{\xi+1}}^{\beta} / \mathbb{B}_{l \wedge k_{\xi+1}}^{\beta}) * \dot{\mathbb{Q}}_{\beta}. \\ & \text{In particular the real added by } \mathbb{Q}_{\beta}, \text{ namely } x_{\xi}, \text{ is going to be generic over } V^{\mathbb{B}_{l}^{\alpha}} \ni x. \text{ This guarantees that } x \not\subseteq^{*} x_{\xi}. \end{split}$$

Assume that $\kappa < \lambda$ and there is no κ -unbounded subset in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{h_{\text{top}}}} \models \kappa \notin \mathcal{T}.$$

Theorem

Assume that there is a strictly increasing unbounded sequence $\langle k_{\xi} : \xi < \kappa \rangle$ in $L \setminus \{l_{top}\}$, then

$$V^{\mathbb{B}^{\lambda}_{hop}}\models\kappa\in\mathcal{T}.$$

The actual actual construction:

Let $C \subseteq \omega \setminus \{0\}$ non-empty and consider the lattice $L = \prod_{n \in C} \aleph_n$ with $f \wedge g = \min(f, g)$. |L| is regular uncountable (either $\aleph_{\max C}$ or $\aleph_{\omega+1}$). For any $n \in C$, L has a \aleph_n -length unbounded increasing sequence. If $n \notin C$ then L has no \aleph_n -unbounded set. Thus:

Theorem (S.)

(GCH) Let $C \subseteq \omega \setminus \{0\}$. Then there is a ccc forcing notion \mathbb{P} so that

 $V^{\mathbb{P}} \models \aleph_n \in \mathcal{T} \leftrightarrow n \in \mathcal{C}.$

The actual actual construction:

Let $C \subseteq \omega \setminus \{0\}$ non-empty and consider the lattice $L = \prod_{n \in C} \aleph_n$ with $f \wedge g = \min(f, g)$. |L| is regular uncountable (either $\aleph_{\max C}$ or $\aleph_{\omega+1}$). For any $n \in C$, L has a \aleph_n -length unbounded increasing sequence. If $n \notin C$ then L has no \aleph_n -unbounded set. Thus:

Theorem (S.

(GCH) Let $C \subseteq \omega \setminus \{0\}$. Then there is a ccc forcing notion \mathbb{P} so that

 $V^{\mathbb{P}} \models \aleph_n \in \mathcal{T} \leftrightarrow n \in C.$

The actual actual construction:

Let $C \subseteq \omega \setminus \{0\}$ non-empty and consider the lattice $L = \prod_{n \in C} \aleph_n$ with $f \wedge g = \min(f, g)$. |L| is regular uncountable (either $\aleph_{\max C}$ or $\aleph_{\omega+1}$). For any $n \in C$, L has a \aleph_n -length unbounded increasing sequence. If $n \notin C$ then L has no \aleph_n -unbounded set. Thus:

Theorem (S.)

(GCH) Let $C \subseteq \omega \setminus \{0\}$. Then there is a ccc forcing notion \mathbb{P} so that

$$V^{\mathbb{P}} \models \aleph_n \in \mathcal{T} \leftrightarrow n \in C.$$

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ-unbounded subset of ω^ω/ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

- The set of κ such that there is a κ-filterbase on ω. F is a κ-filterbase if |F| = κ and ∀A ⊆ F(∃x(x ⊆* A) → |A| < κ).
- The set of κ such that there is a κ -unbounded subset of $\omega^{\omega}/$ fin.
- The lengths of "unbounded scales" in $\omega^{\omega}/$ fin.
- The set of κ such that there is a κ -concentrated subset of \mathbb{R} .
- The set of κ such that there is a κ-Luzin set. X ⊆ ℝ is a κ-Luzin set if |X| = κ and ∀Y ⊆ X(Y is meager ↔ |Y| < κ).
- The lengths of eventually splitting sequences. ⟨x_ξ : ξ < κ⟩ is eventually splitting if ∀x ∈ [ω]^ω∃ξ < κ∀η > ξ(x_η splits x).
- ...find your own example!

Thank you for your attention!

æ

・日・ ・ ヨ・・